\(\int \frac {(d^2-e^2 x^2)^p}{x^5 (d+e x)^4} \, dx\) [305]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 216 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=-\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^2}+\frac {8 e^3 (6-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},4-p,\frac {1}{2},\frac {e^2 x^2}{d^2}\right )}{3 d^7 x}+\frac {e^4 \left (70-21 p+p^2\right ) \left (d^2-e^2 x^2\right )^{-3+p} \operatorname {Hypergeometric2F1}\left (1,-3+p,-2+p,1-\frac {e^2 x^2}{d^2}\right )}{4 d^2 (3-p)} \]

[Out]

-1/4*d^2*(-e^2*x^2+d^2)^(-3+p)/x^4+4/3*d*e*(-e^2*x^2+d^2)^(-3+p)/x^3-1/4*e^2*(17-p)*(-e^2*x^2+d^2)^(-3+p)/x^2+
8/3*e^3*(6-p)*(-e^2*x^2+d^2)^p*hypergeom([-1/2, 4-p],[1/2],e^2*x^2/d^2)/d^7/x/((1-e^2*x^2/d^2)^p)+1/4*e^4*(p^2
-21*p+70)*(-e^2*x^2+d^2)^(-3+p)*hypergeom([1, -3+p],[-2+p],1-e^2*x^2/d^2)/d^2/(3-p)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {866, 1821, 778, 372, 371, 272, 67} \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{p-3}}{4 x^2}-\frac {d^2 \left (d^2-e^2 x^2\right )^{p-3}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{p-3}}{3 x^3}+\frac {e^4 \left (p^2-21 p+70\right ) \left (d^2-e^2 x^2\right )^{p-3} \operatorname {Hypergeometric2F1}\left (1,p-3,p-2,1-\frac {e^2 x^2}{d^2}\right )}{4 d^2 (3-p)}+\frac {8 e^3 (6-p) \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},4-p,\frac {1}{2},\frac {e^2 x^2}{d^2}\right )}{3 d^7 x} \]

[In]

Int[(d^2 - e^2*x^2)^p/(x^5*(d + e*x)^4),x]

[Out]

-1/4*(d^2*(d^2 - e^2*x^2)^(-3 + p))/x^4 + (4*d*e*(d^2 - e^2*x^2)^(-3 + p))/(3*x^3) - (e^2*(17 - p)*(d^2 - e^2*
x^2)^(-3 + p))/(4*x^2) + (8*e^3*(6 - p)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[-1/2, 4 - p, 1/2, (e^2*x^2)/d^2])/
(3*d^7*x*(1 - (e^2*x^2)/d^2)^p) + (e^4*(70 - 21*p + p^2)*(d^2 - e^2*x^2)^(-3 + p)*Hypergeometric2F1[1, -3 + p,
 -2 + p, 1 - (e^2*x^2)/d^2])/(4*d^2*(3 - p))

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 778

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x)^4 \left (d^2-e^2 x^2\right )^{-4+p}}{x^5} \, dx \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}-\frac {\int \frac {\left (d^2-e^2 x^2\right )^{-4+p} \left (16 d^5 e-2 d^4 e^2 (17-p) x+16 d^3 e^3 x^2-4 d^2 e^4 x^3\right )}{x^4} \, dx}{4 d^2} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}+\frac {\int \frac {\left (d^2-e^2 x^2\right )^{-4+p} \left (6 d^6 e^2 (17-p)-32 d^5 e^3 (6-p) x+12 d^4 e^4 x^2\right )}{x^3} \, dx}{12 d^4} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^2}-\frac {\int \frac {\left (64 d^7 e^3 (6-p)-12 d^6 e^4 \left (70-21 p+p^2\right ) x\right ) \left (d^2-e^2 x^2\right )^{-4+p}}{x^2} \, dx}{24 d^6} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^2}-\frac {1}{3} \left (8 d e^3 (6-p)\right ) \int \frac {\left (d^2-e^2 x^2\right )^{-4+p}}{x^2} \, dx+\frac {1}{2} \left (e^4 \left (70-21 p+p^2\right )\right ) \int \frac {\left (d^2-e^2 x^2\right )^{-4+p}}{x} \, dx \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^2}+\frac {1}{4} \left (e^4 \left (70-21 p+p^2\right )\right ) \text {Subst}\left (\int \frac {\left (d^2-e^2 x\right )^{-4+p}}{x} \, dx,x,x^2\right )-\frac {\left (8 e^3 (6-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p}\right ) \int \frac {\left (1-\frac {e^2 x^2}{d^2}\right )^{-4+p}}{x^2} \, dx}{3 d^7} \\ & = -\frac {d^2 \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^4}+\frac {4 d e \left (d^2-e^2 x^2\right )^{-3+p}}{3 x^3}-\frac {e^2 (17-p) \left (d^2-e^2 x^2\right )^{-3+p}}{4 x^2}+\frac {8 e^3 (6-p) \left (d^2-e^2 x^2\right )^p \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (-\frac {1}{2},4-p;\frac {1}{2};\frac {e^2 x^2}{d^2}\right )}{3 d^7 x}+\frac {e^4 \left (70-21 p+p^2\right ) \left (d^2-e^2 x^2\right )^{-3+p} \, _2F_1\left (1,-3+p;-2+p;1-\frac {e^2 x^2}{d^2}\right )}{4 d^2 (3-p)} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(505\) vs. \(2(216)=432\).

Time = 0.90 (sec) , antiderivative size = 505, normalized size of antiderivative = 2.34 \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\frac {\left (d^2-e^2 x^2\right )^p \left (\frac {64 d^4 e \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-p,-\frac {1}{2},\frac {e^2 x^2}{d^2}\right )}{x^3}+\frac {960 d^2 e^3 \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-p,\frac {1}{2},\frac {e^2 x^2}{d^2}\right )}{x}+\frac {240 d^3 e^2 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,-p,2-p,\frac {d^2}{e^2 x^2}\right )}{(-1+p) x^2}+\frac {105\ 2^{3+p} e^4 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (1-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {24 d^5 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (2-p,-p,3-p,\frac {d^2}{e^2 x^2}\right )}{(-2+p) x^4}+\frac {45\ 2^{2+p} e^4 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (2-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {15\ 2^{1+p} e^4 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (3-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {3\ 2^p e^4 (d-e x) \left (1+\frac {e x}{d}\right )^{-p} \operatorname {Hypergeometric2F1}\left (4-p,1+p,2+p,\frac {d-e x}{2 d}\right )}{1+p}+\frac {840 d e^4 \left (1-\frac {d^2}{e^2 x^2}\right )^{-p} \operatorname {Hypergeometric2F1}\left (-p,-p,1-p,\frac {d^2}{e^2 x^2}\right )}{p}\right )}{48 d^9} \]

[In]

Integrate[(d^2 - e^2*x^2)^p/(x^5*(d + e*x)^4),x]

[Out]

((d^2 - e^2*x^2)^p*((64*d^4*e*Hypergeometric2F1[-3/2, -p, -1/2, (e^2*x^2)/d^2])/(x^3*(1 - (e^2*x^2)/d^2)^p) +
(960*d^2*e^3*Hypergeometric2F1[-1/2, -p, 1/2, (e^2*x^2)/d^2])/(x*(1 - (e^2*x^2)/d^2)^p) + (240*d^3*e^2*Hyperge
ometric2F1[1 - p, -p, 2 - p, d^2/(e^2*x^2)])/((-1 + p)*(1 - d^2/(e^2*x^2))^p*x^2) + (105*2^(3 + p)*e^4*(d - e*
x)*Hypergeometric2F1[1 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (24*d^5*Hypergeometric
2F1[2 - p, -p, 3 - p, d^2/(e^2*x^2)])/((-2 + p)*(1 - d^2/(e^2*x^2))^p*x^4) + (45*2^(2 + p)*e^4*(d - e*x)*Hyper
geometric2F1[2 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (15*2^(1 + p)*e^4*(d - e*x)*Hy
pergeometric2F1[3 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (3*2^p*e^4*(d - e*x)*Hyperg
eometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/((1 + p)*(1 + (e*x)/d)^p) + (840*d*e^4*Hypergeometric2F1[-p
, -p, 1 - p, d^2/(e^2*x^2)])/(p*(1 - d^2/(e^2*x^2))^p)))/(48*d^9)

Maple [F]

\[\int \frac {\left (-e^{2} x^{2}+d^{2}\right )^{p}}{x^{5} \left (e x +d \right )^{4}}d x\]

[In]

int((-e^2*x^2+d^2)^p/x^5/(e*x+d)^4,x)

[Out]

int((-e^2*x^2+d^2)^p/x^5/(e*x+d)^4,x)

Fricas [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{5}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^5/(e*x+d)^4,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p/(e^4*x^9 + 4*d*e^3*x^8 + 6*d^2*e^2*x^7 + 4*d^3*e*x^6 + d^4*x^5), x)

Sympy [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\int \frac {\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{x^{5} \left (d + e x\right )^{4}}\, dx \]

[In]

integrate((-e**2*x**2+d**2)**p/x**5/(e*x+d)**4,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**p/(x**5*(d + e*x)**4), x)

Maxima [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{5}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^5/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^4*x^5), x)

Giac [F]

\[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\int { \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4} x^{5}} \,d x } \]

[In]

integrate((-e^2*x^2+d^2)^p/x^5/(e*x+d)^4,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p/((e*x + d)^4*x^5), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^p}{x^5 (d+e x)^4} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^p}{x^5\,{\left (d+e\,x\right )}^4} \,d x \]

[In]

int((d^2 - e^2*x^2)^p/(x^5*(d + e*x)^4),x)

[Out]

int((d^2 - e^2*x^2)^p/(x^5*(d + e*x)^4), x)